Diabetes Prevention & Management of Complications

Dr Ketan Dhatariya Consultant in Diabetes and Endocrinology NNUH

The Planet is Changing

How do old and new relate? A guide to the new values expressed as mmol/mol is:

DCCT – HbA1c	IFCC – HbA1c
(%)	(mmol/mol)
6.0	42
6.5	48
7.0	53
7.5	59
8.0	64
9.0	75

IFCC (mmol/mol) = (current value (%) * 10.93) - 23.50 (reported to a whole number)

Who is From One of These Places?

Africa

North or South America
Australia or Polynesia
Europe

Why is This Important?

Most of you are from a genetically susceptible population

Many of you may know someone with diabetes

You may be the person they turn to for advice

Why is it Important?

Diabetes has an impact on almost every branch of medicine

More than 10% of inpatients have diabetes

It is becoming more prevalent

The global economic burden of diabetes is enormous

The Impact of Diabetes in the UK

The prevalence of people with known diabetes increased in one health district from 2.3 to 3.4% between 1996 and 2005, while the proportion known to have diabetic complications fell from half to one third

 Glucose-lowering therapies and test strips accounted for 6.9% of the total UK drug bill in 2008

Adjusted costs for these prescriptions rose (in England) from £290m in 2000 to £591m in 2008

Insulin accounted for 48.4% of these costs and test strips for a further 23.6%

Gale EAM Diabetic Medicine 2010;27(9):973-976

The Impact of Diabetes in the UK

The glitazones accounted for 11.7% of scripts by cost, but 2.8% by volume. Metformin accounted for 10.7% by cost, but 52.8% by volume

Use of insulin secretagogues (mainly sulphonylureas), fell from 16.2 to 3.7% by cost between 2000 and 2008 and from 33.7 to 19.5% by volume

Patients with Type 1 diabetes had a mean HbA1c of 8.8% in 2000 as against 8.7% in 2008. Insulin-treated patients with Type 2 diabetes had an HbA1c of 8.5% in 2000 as against 8.4% in 2008

The Impact of Diabetes in the UK

Reductions in HbA1c were seen in some treatment groups and may reflect earlier diagnosis and / or more aggressive escalation of therapy

 Systolic blood pressure fell by approximately 8 mmHg ()5%) in those with Type 2 diabetes and total cholesterol fell from 5.6 to 4.2 mmol / I ()25%) over the same period

The costs for acute hospital care for diabetes rose from 8.7 to 12.3% of revenue between 1994 and 2004

Some Definitions

Type 2

Others (not mentioned any more)

Two Main Types

 Type 1
 Autoimmune destruction of the β cells of the Islets of Langerhans in the pancreas. This leads to an absolute insulin deficiency. Insulin treatment is therefore mandatory

 Previously known as IDDM or juvenile onset diabetes

Two Main Types

Type 2

- Impaired insulin action (insulin resistance) and eventually, impaired insulin secretion as well
- Usually treated with oral medication initially, then may move onto insulin
- Formerly known as NIDDM or maturity onset diabetes

How is the Diagnosis Made (1)?

Giucose criteria (mmoi/L)			
	Fasting*	Random	OGTT (2 hr value)
Diabetes mellitus	≥ 7.0	≥ 11.1**	≥ 11.1
Impaired fasting glucose	5.6 – 6.9		
Impaired glucose tolerance			7.9 – 11.0
Normal	≤ 5.5		≤ 7.8

* includes fasting value on OGTT (oral glucose tolerance test) or no calorie intake for ≥8 hours.

** with classic symptoms or hyperglycaemic crisis.

Davies PH et al Brit J Diab Vasc Dis 2010;10(6):261-264

How is the Diagnosis Made (2)?

HbA _{1c} criteria: IFCC assay ¹¹			
	DCCT aligned – HbA _{1c} (%)	IFCC- HbA _{1c} (mmol/mol)	
Diabetes mellitus	≥ 6.5	≥ 48	
Pre-diabetes	5.7 – 6.4	39-47	
Normal	≤ 5.6	≤ 38	

Please note the above values may not apply in the following clinical circumstances

- Abnormal red cell turnover conditions: such as anaemias from haemolysis, spherocytosis or iron deficiency (such as in pregnancy)
- Haemoglobinopathies: certain ones will affect diagnostic criteria (eg HbS, HbC, HbF, HbE). With Sickle cell trait, specific HbA_{1c} assays will overcome this problem.
- Rapid onset diabetes: such as most Type 1 diabetes mellitus and some Type 2: the HbA_{1c} can be within the normal range despite marked hyperglycaemia
- Near patient testing: using current HbA_{1c} tests are not deemed to be sufficiently accurate for diagnosis
- In these and other cases where there is doubt as to the use of HbA_{1c}, the glucose criteria below must be used. Renal failure concerns can be overcome if specific assays are used.

Davies PH et al Brit J Diab Vasc Dis 2010;10(6):261-264

How is the Diagnosis Made (3)?

Diagnosis of Diabetes Mellitus: Summary of ADA criteria¹² Any one criterion is sufficient even if others normal

1: HbA_{1c}: ≥ 6.5% (≥ 48 mmol/mol) using an IFCC standardised assay

2: Fasting glucose: ≥ 7.0 mmol/L

3: OGTT 2 hour value: ≥ 11.1 mmol/L

4: Random glucose ≥ 11.1 mmol/L with classic symptoms or hyperglycaemic crisis.

In the absence of classic symptoms or hyperglycaemic crisis, criteria 1 - 3 need repeating.

So, in summary, making the diagnosis of diabetes is not as straightforward as it used to be

Davies PH et al Brit J Diab Vasc Dis 2010;10(6):261-264

Clinical Features

Stand Stands 18 1	Type 1	Type 2
Age at Onset (years)	< 40	> 40
Duration of Symptoms	Days or Weeks	Years
Body Weight	Normal or Low	Normal or High
Ketones	Yes	No
Insulin Mandatory?	Yes	No
Autoantibodies	Yes	No
Complications at Diagnosis	No	Up to 20%
Family History?	No	Yes
Other Autoimmune Diseases?	Yes	No
Percentage of cases	10%	90%

Familial Risks – Type 1 If neither parent = 1 in 250 If mother has it = 1 in 50 - 100If father has it = 1 in 12 If 1 sibling has it = 1 in 15 - 30If 1 sibling and 1 parent has it = 1 in 10 If both parents have it = 1 in 3

Familial Risks – Type 2

If neither parent has type 2 diabetes = 10%

■ If 1 parent has it = 20 - 30%

■ If 1 sibling has it = 40%

■ If both parents have it = 70%

If an identical twin has it = 80-100%

So, Can Diabetes Be prevented?

Yes – but only if you chose your parents very carefully

The Insulin Signalling Cascade

© Current Medicine Group

Is Type 1 Diabetes Preventable?

Not at the moment
 Lots of people are doing work on trying to modulate the immune system

No luck as yet

Rituximab

87 people with newly diagnosed type 1 diabetes

Given 4 doses of rituximab over 3 weeks

Followed up for a year

Pescovitz MD et al NEJM 2009;361(22):2143-2152

Ciclosporin and Methotrexate

10 children with new onset T1DM given standard treatment or immunosuppressant's

Sobel DO et al Acta Diabteologia 2010;47(3):243-250

Is Type 2 Diabetes Preventable?

Absolutely

At least 3 studies have shown that TLC can make a difference

Incidence of Diabetes

The DPP Research Group, NEJM 2002;346:393-403

Study Number 2

The Finnish DPS Group, NEJM 2001;344:1343-1350

What About Other Drugs?

1800 people randomised to pioglitazone or placebo

DeFronzo RA et al NEJM 2011;364(12):1104-1115

Welcome to the UEA-IFG Study: Delivering a Diabetes Prevention Programme In Central, North and South Norfolk, UK

About the study

Want to know more?

Meet the study team

What's a T2Trainer?

Useful links and maps

Book appointment *

CONTACT US: UEA-IFG Study Team NHS Clinical Research & Trials Unit School of Medicine, Health Policy & Practice University of East Anglia Norwich NR4 7TJ

(01603) 597300 <u>www.uea-ifg.nhs.uk</u>

The UEA-IFG Study

Would you like to take part in the UEA-IFG study in Norfolk, UK?

Click on the map to check if you're eligible *** Our last Screening Appointments are on Fri 18th Dec 2009. If this is your first contact with us, please get in touch with us before 30th November 2009. ***

* In order to access these pages you must be eligible for the study and have a username and password

Change in BMI Over Time

BMI (kg/m²)	1993/1994	2004/2005	% change
<25	38.5	32.1	-20
25-29	41.2	39.0	-5.6
<u>></u> 30	20.3	28.9	29.8

Elderly Mexican Americans

Beard HA et al Diabetes Care 2009;32(12):2212-2217

Number with Diabetes

BMI (kg/m²)	MI (m ²) 1993/1994 2004/2005		% change	
<25	18.8	23.6	4.8	
25-29	16.9	40.3	23.4	
<u>></u> 30	27.3	46.9	19.6	

Elderly Mexican Americans

Beard HA et al Diabetes Care 2009;32(12):2212-2217

Numbers Predicted to Have Diabetes in the USA

Source: Diabetes Population Cost Model

Huang et al et al Diabetes Care 2009;32(12):2225-2229

Huang et al et al Diabetes Care 2009;32(12):2225-2229

Data From 3.3M Danes

Schramm TK et al Circulation 2008;117:1945-1954

Data from 700,000 People

	Number of cases	HR (95% CI)	l² (95% Cl)
Coronary heart disease*	26 505	- 2·00 (1·83-2·19)	64 (54-71)
Coronary death	11 556	2·31 (2·05-2·60)	41 (24-54)
Non-fatal myocardial infarction	14741	1.82 (1.64-2.03)	37 (19-51)
Stroke subty pes*			
Ischaemic stroke	3799	2.27 (1.95-2.65)	1 (0-20)
Haemorrhagic stroke	1183	1·56 (1·19-2·05)	0 (0-26)
Unclassified stroke	4973	1.84 (1.59-2.13)	33 (12-48)
Other vascular deaths	3826		0 (0-26)
	1	2 4	

Emerging Risk Factors Collaboration Lancet 2010;375(9733):2215-2222

Data from 700,000 People

Risk of Developing CHD

Emerging Risk Factors Collaboration Lancet 2010;375(9733):2215-2222

Vascular Complications Of Type 2 Diabetes At The Time Of Diagnosis

1. UKPDS Group. *Diabetes Res* 1990; **13**: 1–11. 2. The Hypertension in Diabetes Study Group. *J Hypertension* 1993; **11**: 30–17. 3. Wingard DL *et al. Diabetes Care* 1993; **16**: 1022–5.

OK, so You Die – So What?

Diabetes remains:
 The most common cause of blindness in the developed world

Retinopathy and Glycaemic Control

DCCT Research Group NEJM 1993;329(14):977-986

OK, So You Go Blind Before You Die

It is the most common cause for non-traumatic lower limb amputations in the world – in the UK, 50% of these occur in the 4% of the population who have diabetes

OK, So You're Blind and Limp

Diabetes is the most common cause of end stage renal disease in the world

Nephropathy and Glycaemic Control

DCCT Research Group NEJM 1993;329(14):977-986

Blind, Limp and on Dialysis

 You have a 2 – 3 fold increased risk of macro-vascular risk
 i.e. strokes and heart attacks

Glycaemic Control is Important

UKPDS Lancet 1998;352(9131):837-853

Numbers Needed to Treat

Primary prevention over 5 years
 Statin - 40 - 70
 BP lowering drugs - 80 - 160
 Aspirin - > 300

Ridker PM et al Circulation: Cardiovascular Quality and Outcomes. 2009;2:616-623

Blind, Limp, on Dialysis and Someone Wiping your Bottom

It's all preventable

A little bit of exercise

A little bit less to eat

Any Questions?