NHS Foundation Trust

Optimising Peri-Operative Glycaemic Management for the Diabetic Foot

Prof Ketan Dhatariya MBBS MSc MD MS FRCP PhD

Consultant in Diabetes and Endocrinology

Norfolk and Norwich University Hospitals

Conflicts of Interest

NHS Foundation Trust

Who is This Strange Man?

- I qualified in 1991
- I trained in D&E and G(I)M in London
- I did general practice for 2 years
- I did ITU / anaesthetics for a year
- I did research at Mayo Clinic for 2 years
- I have been in Norwich since 2004
- Currently my other roles include
 - Chair of the Specialist Clinical Exam in D&E and the European Board Exam in Endocrinology, Diabetes and Metabolism
 - President-Elect of the Endocrine Section of the Royal Society of Medicine
 - On the Steering group for the Joint British Diabetes Societies for Inpatient Care

Improving the quality of healthcare

Norfolk and Norwich University Hospitals

NHS Foundation Trust

National Confidential Enquiry into Patient Outcome and Death – NCEPOD Report 2018

https://www.ncepod.org.uk/2018pd.html

NHS Foundation Trust

13 Recommendations

2 Appoint a C in hospitals person will processes to 3 Use a star to ensure	I be responsible for developing policies and to: Inderdised referral process for elective surger e appropriate assessment and optimisation	manag gery. In petes m utine ca ⁶	Ensure a safe handover of patients with theatre recovery to ward, this should be the case notes and include: a. Medications given in theatre b. Glucose level on leaving the recovery Develop a pre-operative assessment cli and standards for the management of diabetes. These should be developed be anaesthotist* and the clinical lead for Ensure that patients with diabetes at	10	Cancellation of elective surgery in patients with diabetes should be avoided, particularly for known clinical reasons. Cancellation rates should be audited locally and the results acted upon. Develop and implement referral criteria for surgical inpatients with diabetes to: Record and monitor the time at which a patient begins fasting (for surgery or clinical reasons). If a
a. Satisfac 4 Ensure th are close accordin a. at sign checkli	This should include: ctory HbA1c levels within 3 months of reference hat patients with diabetes undergoing surgere ely monitored and their glucose levels manage gly. Glucose monitoring should be included: n-in and sign-out stages of the surgical safety ist (e.g. WHO safety checklist) mesthetic charts	ry 8 ed	operative assessment clinic prior to e have: A clinical lead for day surgery* shoul all hospitals providing day surgery se along with the clinical lead for perior management should be responsible	12	Prioritise patients with diabetes on the operating list to avoid prolonged starvation.* Prioritisation of patients with diabetes on operating lists should be subject to local clinical audit and the results acted upon. (Lead Anaesthetist for Pre-operative Assessment,
c. in thea d. in earl System n awarene medical stickers in (Clinical Manage	aestnetic charts atre recovery ly warning scoring systems markers and alerts should be used to raise ess of glucose levels, e.g. tagging of electroni records, use of a patient passport or unique in paper based case notes. I Lead for Perioperative Diabetes ement, Lead Anaesthetist for Pre- tive Assessment, Clinical Directors,		patients with diabetes are considered where appropriate. Policies should be ensure patients with diabetes have en day surgery. (Clinical Lead for Day Surgery, Cl Perioperative Diabetes Managen Directors)	≘ ¢,	Provide patients with diabetes with education and information about their diabetes management at discharge from hospital as part of the discharge planning process. (Diabetes Specialist Nurses, Clinical Lead for Perioperative Diabetes Management)

https://www.ncepod.org.uk/2018pd.html

NHS Foundation Trust

Guidance

Management of adults with diabetes undergoing surgery and elective procedures: improving standards

Supporting, Improving, Caring

NHS Diabetes

In 2011 Along Came This.....

JBDS-IP Diabetes Societies

Management of adults with diabetes undergoing surgery and elective procedures: Improving standards

DISN

SARS

DABETES UK

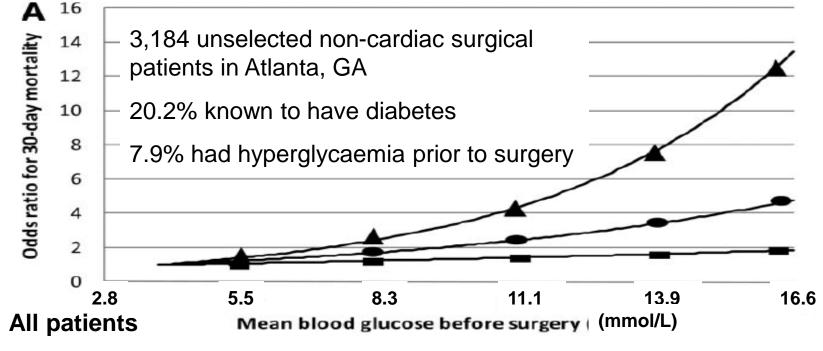
Revised March 2016

The Republication

trend

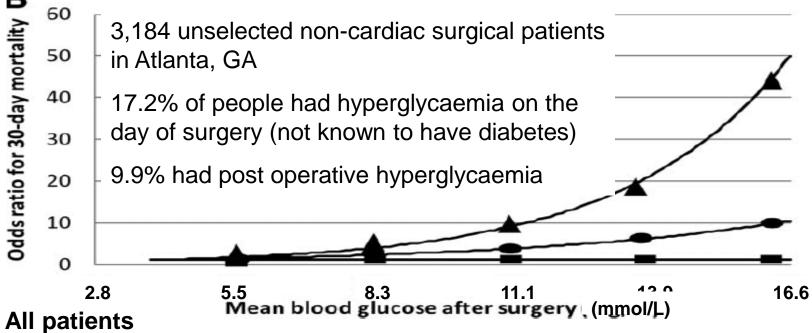
Revised in 2016.....

http://www.diabetologists-abcd.org.uk/JBDS/Surgical_guidelines_2015_full_FINAL_amended_Mar_2016.pdf



NHS Foundation Trust

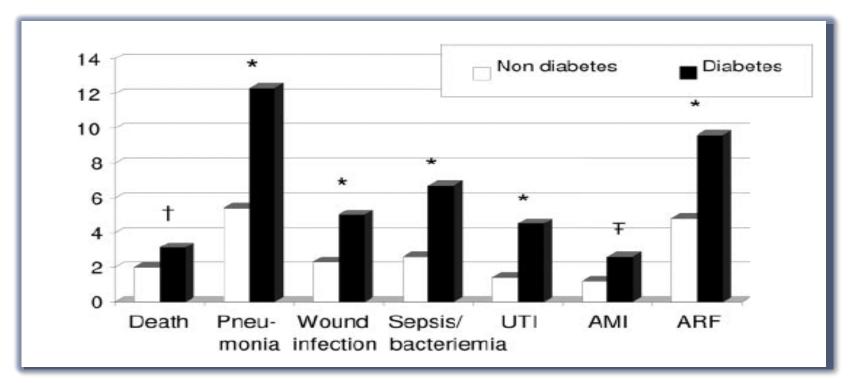
The Patient Journey


Do High Glucose Levels Cause Harm?

- Patients with diabetes
- Patients without diabetes

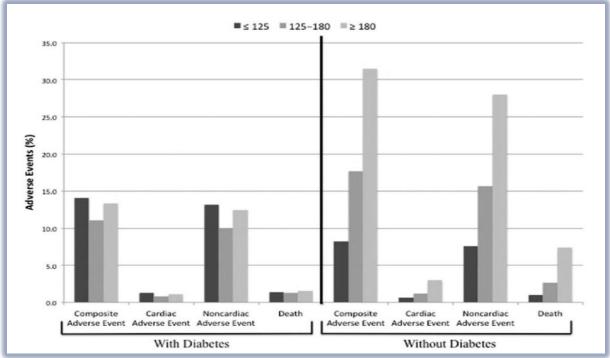
Frisch A et al Diabetes Care 2010;33(8):1783-1788

Do High Glucose Levels Cause Harm?



- Patients with diabetes
- Patients without diabetes

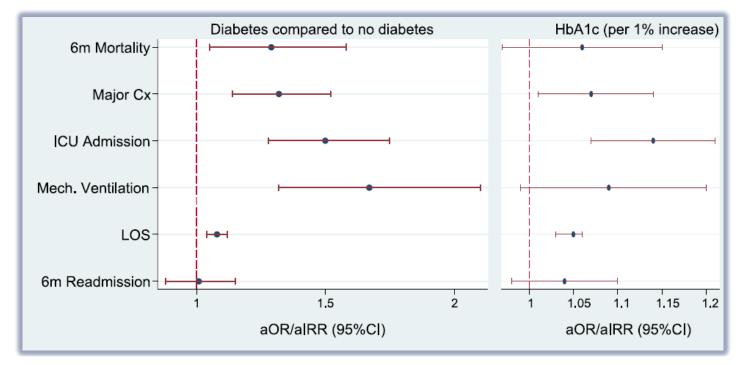
Frisch A et al Diabetes Care 2010;33(8):1783-1788


NHS Foundation Trust

Do High Glucose Levels Cause Harm?

Frisch A et al Diabetes Care 2010;33(8):1783-1788

Norfolk and Norwich University Hospitals Hyperglycaemia in Previously Foundation Trust Normoglycaemic People is Bad

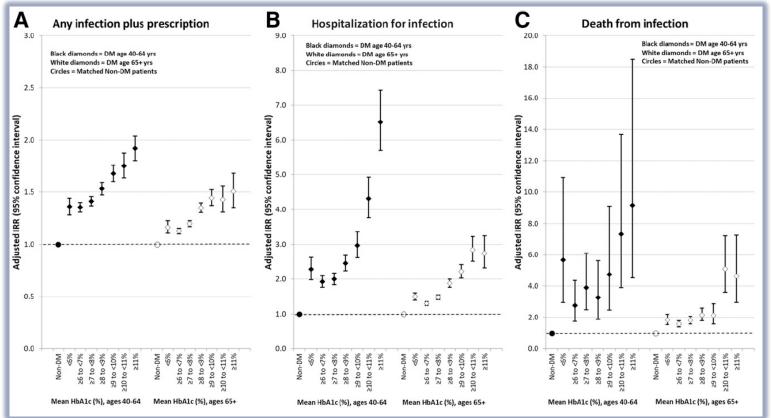


Composite endpoint = readmission; ITU; falls; any infection; debridement; AKI; re-operation

Kotagal M et al Annals of Surgery 2015;261(1):97-103

NHS Foundation Trust

7,565 Canadians From 1 Hospital



Prospective (May 2013-January 2016), observational, adjusted, aged ≥54

Yong PH et al Diabetes Care 2018;41(6):1172-1179

NHS Foundation Trust

Infections

Critchley JA et al Diabetes Care 41(10):2127-2135

Norfolk and Norwich University Hospitals

NHS Foundation Trust

Glucose and SSI – A Variety of Specialities

	Author Year	Gynecologic	ES (95% CI)	% Weight Author Ye	ear Brea	ES (95% Cl	%) Weight	
	Chapman 2015		1.80 (0.85, 3.85)	9.82 Bertin 19	998	÷ 2.36.(0.38. 1	14.40) 3.44	
Author Year	Colorectal	ES (95% CI)	Year	Multiple / Other	% ES (95% CI) Weight	Spinal	% ES (95% Cl) Weight	
Anthony 2011 Coakley 2012		Anaya 0.84 (0.41, 1.67) Bachor Bykow 2.20 (1.32, 4.27) Canno Chaich	ki 2011 0 2012 ana 2015	+	1.12 (0.58, 2.09) 2.10 2.10 (1.20, 3.80) 2.51 2.80 (1.20, 6.50) 1.30 1.24 (1.09, 1.41) 10.76 6.09 (1.38, 9.35) 1.04		+ 1.42 (0.93, 2.18) 20.25 2.54 (0.61, 10.56) 2.35 0.79 (0.28, 2.20) 4.38	
Delerhoi 2013	Cardiac	1.20 (1.00, 1.44) Chen Chiang Chopra Chu ES (95% Cl) Davies	2010 2014 2012 2015 2012		1.20 (0.67, 2.16) 2.44 0.90 (0.50, 1.80) 2.11 1.80 (1.09, 2.96) 3.14 1.22 (0.36, 4.20) 0.65 3.51 (1.23, 10.04) 0.87		─ 2.11 (1.37, 3.21) 20.27 ★ 4.20 (1.10, 16.30) 2.62 0.85 (0.42, 1.69) 9.01	
Bundy 2006 Fakih 2007 Fowler 2005		Elfenbi 2.15 (1.67, 2.75) 2.31 (1.44, 3.71) 1.43 (1.38, 1.49) Harnes	in 2014 2008 2011 2010		- 3.51 (1.23, 10.04) 0.87 1.95 (1.34, 2.82) 4.74 1.34 (0.46, 3.59) 0.91 - 3.21 (0.82, 10.96) 0.59 1.40 (0.44, 4.41) 0.73	Arthroplasty	% ES (95% Cl) Weight	
Haas 2005 Haley 2012 Haley 2012		- 1.45 (0.31, 5.64) Kaafar Kalra	uni 2010 2013 umbelis 2011 2014		1.69 (0.45, 6.40) 0.56 3.16 (0.54, 18.40) 0.32 1.45 (0.61, 3.24) 1.33 3.20 (1.22, 8.40) 1.02 1.34 (0.52, 3.44) 1.06		1.83 (1.02, 3.27) 6.80 1.28 (1.03, 1.60) 47.59	
Haley 2012 Harbarth 2000 Latham 2001		1.87 (1.22, 2.87) Lynch Mahaja 2.20 (1.70, 2.90) Neuma 2.76 (1.64, 4.66) Park Paryav	yer 2007 2009		1.34 (0.91, 1.97) 4.51 2.10 (1.70, 3.40) 5.17 1.33 (1.22, 1.45) 11.89 1.13 (0.61, 2.00) 2.39 1.25 (0.33, 4.70) 0.56		1.25 (0.85, 1.83) 15.70	
Marschall 2007 Nash 2011 Olsen 2002		- 1.80 (0.60, 5.40) Shields 1.30 (1.07, 1.59) Shuma - 2.85 (1.42, 5.70) Spanic	2013 n 2012 2012 as 2014	•	3.03 (1.32, 6.98) 1.33 2.57 (0.55, 12.00) 0.42 2.67 (0.94, 7.62) 0.88 1.18 (1.09, 1.27) 12.11		1.21 (0.91, 1.62) 28.05 1.89 (0.62, 5.75) 1.86	
Sharma 2009 Townsend 1993 Trick 2000		2.45 (1.56, 3.84) Suzuki 2.07 (1.24, 3.46) Talbot — 2.60 (1.00, 6.70) Tseren — 4.71 (2.39, 9.28) Walcot	2010 2004 2009 puntsag 2014 2014	+ +	2.08 (0.04, 16.72) 0.11 3.65 (1.42, 9.36) 1.07 2.25 (1.02, 4.94) 1.47 1.13 (0.91, 1.39) 8.26	0.728)	1.30 (1.11, 1.51) 100.00 (1.01, 1.66)	
Trussell 2008 Wilson 2003 Overall (I-squared = 78 with estimated predictive		1.77 (0.80, 3.93) Woold deFreit 2.14 (1.78, 2.56) Overal	dge 2013	0.001)	3.43 (0.71, 14.76) 0.43 1.83 (0.39, 8.64) 0.42 1.21 (1.07, 1.38) 10.80 1.46 (1.32, 1.62) 100.00 (1.07, 2.00)		(,	
· · ·			.04	1	25	1	5.75	
.108								

NHS Foundation Trust

More Observational Data

- Observational data from 55 US hospitals
- Over 5 years
- Outcomes of 18,278 patients
 - 11,633 of whom who had a BG measured pre op, on day 1 post op or day 2 post op

Kwon S et al Ann Surgery 2013;257(1):8-14

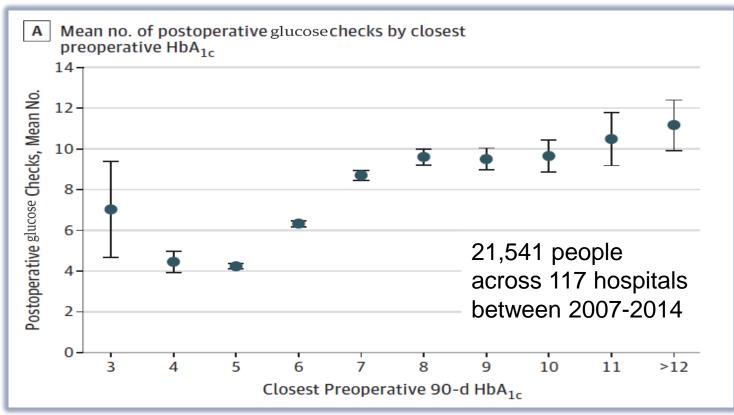
NHS Foundation Trust

Outcomes

TABLE 2. Adjusted Multivariate Logistic Regression Analysis on the Effect of Perioperative Hyperglycemia (>180 mg/dL at Any Point on the Day of Surgery, Postoperative Day 1, or Postoperative Day 2) on Outcomes Presented as Odds Ratio and 95% Confidence Intervals (Within Parenthesis)

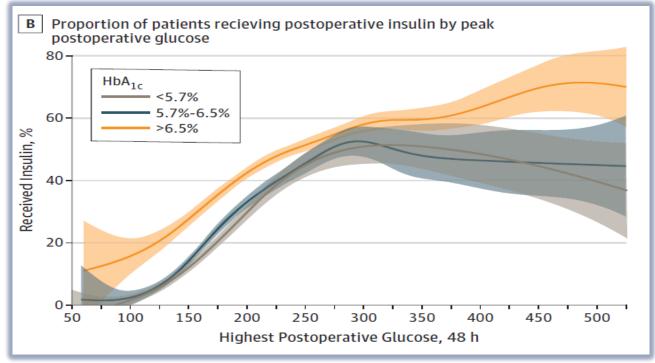
	Composite Infections (n = 491)	Deaths (n = 48)	Reoperative Interventions (n = 257)	Anastomotic Failures (n = 43)	Myocardial Infarctions (n = 13)
Hyperglycemia	2.0 (1.63-2.44)	2.71 (1.72-4.28)	1.8 (1.41-2.3)	2.43 (1.38-4.28)	> 1.15 (0.43-3.1)

High glucose levels were associated with poor outcomes


Diabetes [§]					
Noninsulin-dependent	0.51 (0.37-0.69)	0.48 (0.25-0.93)	0.63 (0.44-0.9)	0.45 (0.21-0.99)	0.77 (0.15-4.08)
Insulin-dependent	0.52 (0.35-0.76)	0.78 (0.36-1.68)	0.54 (0.35-0.85)	0.49 (0.18-1.32)	1.66 (0.26–10.71)

But - knowing that someone had diabetes was protective (?increased vigilance)

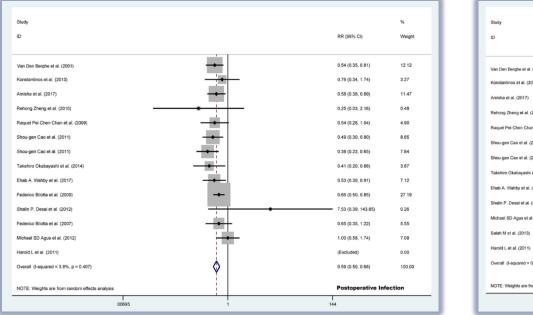
Kwon S et al Ann Surgery 2013;257(1):8-14

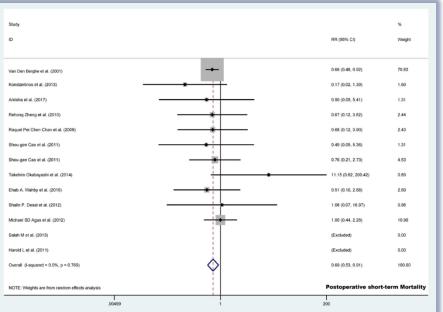

NHS Foundation Trust

Jones CE et al JAMA Surg 2017;152(11):1031-1038

The Highest Pre-op HbA1c Were Most Likely to go onto Insulin Post-op

Jones CE et al JAMA Surg 2017;152(11):1031-1038


Norfolk and Norwich University Hospitals



There is a Trend Emerging

- Data from the 2010-2012 Surgical Care and Outcomes Assessment Programme across 55 hospitals in the US
- 40,836 patients, of whom 19% had DM, and of whom 47% had a peri-operative BG test
- Those who had not been identified as having diabetes or those who developed post-operative hyperglycaemia had the worst outcomes

But Are There Any Data Showing That Improving Control Makes a Difference?

Mortality Wang YY et al BMC Endo Dis 2018;18:42

Infection

But Implementation is Hard Work!

Perioperative diabetes care: room for improving the person centredness

I. Hommel¹, P. J. van Gurp², C. J. Tack², J. Liefers¹, J. Mulder¹, H. Wollersheim¹ and M. E. J. L. Hulscher¹

Impact of a multifaceted strategy to improve perioperative diabetes care

I. Hommel¹, H. Wollersheim¹, C. J. Tack², J. Mulder¹, P. J. van Gurp² and M. E. J. L. Hulscher¹

Hommel I et al Diab Med 2015;32(4):561-568 Hommel I et al Diab Med 2017;34(2):287-285

Who Do I think Should Have Glycaemic Assessment by Preoperative HbA1c

- Anyone at risk!
 - Over 40 years old (?30 in South Asians)
 - FH of DM
 - Personal history of GDM
 - Hyperlipidaemia
 - Hypertensive
 - BMI >27Kgm²

NHS Foundation Trust

Optimising Peri-Operative Glycaemic Management for the Diabetic Foot

www.norfolkdiabetes.com

ketan.dhatariya@nnuh.nhs.uk

